33 research outputs found

    Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles

    Get PDF
    Achieving fairness and soundness in non-simultaneous rational secret sharing schemes has proved to be challenging. On the one hand, soundness can be ensured by providing side information related to the secret as a check, but on the other, this can be used by deviant players to compromise fairness. To overcome this, the idea of incorporating a time delay was suggested in the literature: in particular, time-delay encryption based on memory-bound functions has been put forth as a solution. In this paper, we propose a different approach to achieve such delay, namely using homomorphic time-lock puzzles (HTLPs), introduced at CRYPTO 2019, and construct a fair and sound rational secret sharing scheme in the non-simultaneous setting from HTLPs. HTLPs are used to embed sub-shares of the secret for a predetermined time. This allows to restore fairness of the secret reconstruction phase, despite players having access to information related to the secret which is required to ensure soundness of the scheme. Key to our construction is the fact that the time-lock puzzles are homomorphic so that players can compactly evaluate sub-shares. Without this efficiency improvement, players would have to independently solve each puzzle sent from the other players to obtain a share of the secret, which would be computationally inefficient. We argue that achieving both fairness and soundness in a non-simultaneous scheme using a time delay based on CPU-bound functions rather than memory-bound functions is more cost effective and realistic in relation to the implementation of the construction

    Constant-Size Structure-Preserving Signatures: Generic Constructions and Simple Assumptions

    Get PDF
    This paper presents efficient structure-preserving signature schemes based on assumptions as simple as Decision-Linear. We first give two general frameworks for constructing fully secure signature schemes from weaker building blocks such as variations of one-time signatures and random-message secure signatures. They can be seen as refinements of the Even-Goldreich-Micali framework, and preserve many desirable properties of the underlying schemes such as constant signature size and structure preservation. We then instantiate them based on simple (i.e., not q-type) assumptions over symmetric and asymmetric bilinear groups. The resulting schemes are structure-preserving and yield constant-size signatures consisting o

    Short Group Signatures via Structure-Preserving Signatures: Standard Model Security from Simple Assumptions

    Get PDF
    International audienceGroup signatures are a central cryptographic primitive which allows users to sign messages while hiding their identity within a crowd of group members. In the standard model (without the random oracle idealization), the most efficient constructions rely on the Groth-Sahai proof systems (Euro-crypt'08). The structure-preserving signatures of Abe et al. (Asiacrypt'12) make it possible to design group signatures based on well-established, constant-size number theoretic assumptions (a.k.a. " simple assumptions ") like the Symmetric eXternal Diffie-Hellman or Decision Linear assumptions. While much more efficient than group signatures built on general assumptions, these constructions incur a significant overhead w.r.t. constructions secure in the idealized random oracle model. Indeed, the best known solution based on simple assumptions requires 2.8 kB per signature for currently recommended parameters. Reducing this size and presenting techniques for shorter signatures are thus natural questions. In this paper, our first contribution is to significantly reduce this overhead. Namely, we obtain the first fully anonymous group signatures based on simple assumptions with signatures shorter than 2 kB at the 128-bit security level. In dynamic (resp. static) groups, our signature length drops to 1.8 kB (resp. 1 kB). This improvement is enabled by two technical tools. As a result of independent interest, we first construct a new structure-preserving signature based on simple assumptions which shortens the best previous scheme by 25%. Our second tool is a new method for attaining anonymity in the strongest sense using a new CCA2-secure encryption scheme which is simultaneously a Groth-Sahai commitment

    On the Security of Time-Lock Puzzles and Timed Commitments

    Get PDF
    Time-lock puzzles---problems whose solution requires some amount of sequential effort---have recently received increased interest (e.g., in the context of verifiable delay functions). Most constructions rely on the sequential-squaring conjecture that computing g2TmodNg^{2^T} \bmod N for a uniform gg requires at least TT (sequential) steps. We study the security of time-lock primitives from two perspectives: - We give the first hardness result about the sequential-squaring conjecture in a non-generic model. Namely, in a quantitative version of the algebraic group model (AGM) that we call the strong AGM, we show that speeding up sequential squaring is as hard as factoring NN. - We then focus on timed commitments, one of the most important primitives that can be obtained from time-lock puzzles. We extend existing security definitions to settings that may arise when using timed commitments in higher-level protocols, and give the first construction of non-malleable timed commitments. As a building block of independent interest, we also define (and give constructions for) a related primitive called timed public-key encryption

    Improved Structure Preserving Signatures under Standard Bilinear Assumptions

    Get PDF
    We show that the recent structure-preserving signature (SPS) scheme of Kiltz, Pan and Wee [CRYPTO 2015], provably secure under the standard bilinear pairings group assumption SXDH, can be improved to have one less group element and one less pairing product equation in the signature verification step. Our improved SPS scheme only requires six group elements (five in one group, and one in the other), and two pairing product equations for verification. The number of pairing product equations is optimal, as it matches a known lower bound of Abe et al [CRYPTO 2011]. The number of group elements in the signature also approaches the known lower bound of four for SXDH assumption. Further, while the earlier scheme had a security reduction which incurred a security loss that is quadratic in number of queries QQ, our novel security reduction incurs only a QlogQQ \log{Q} factor loss in security. Structure-preserving signatures are used pervasively in group signatures, group encryptions, blind signatures, proxy signatures and many other anonymous credential applications. Our work directly leads to improvements in these schemes. Moreover, the improvements are usually of a higher multiplicative factor order, as these constructions use Groth-Sahai NIZK proofs for zero-knowledge verification of pairing-product equations. We also give our construction under the more general and standard \D_k-MDDH (Matrix-DDH) assumption. The signature size in our scheme is 3k+23k+2 elements in one group, and one element in the other. The number of pairing product equations required for verification is only 2k2k, whereas the earlier schemes required at least 2k+12k+1 equations

    Zero-Knowledge Arguments for Matrix-Vector Relations and Lattice-Based Group Encryption

    Get PDF
    International audienceGroup encryption (GE) is the natural encryption analogue of group signatures in that it allows verifiably encrypting messages for some anonymous member of a group while providing evidence that the receiver is a properly certified group member. Should the need arise, an opening authority is capable of identifying the receiver of any ciphertext. As introduced by Kiayias, Tsiounis and Yung (Asiacrypt'07), GE is motivated by applications in the context of oblivious retriever storage systems, anonymous third parties and hierarchical group signatures. This paper provides the first realization of group encryption under lattice assumptions. Our construction is proved secure in the standard model (assuming interaction in the proving phase) under the Learning-With-Errors (LWE) and Short-Integer-Solution (SIS) assumptions. As a crucial component of our system, we describe a new zero-knowledge argument system allowing to demonstrate that a given ciphertext is a valid encryption under some hidden but certified public key, which incurs to prove quadratic statements about LWE relations. Specifically, our protocol allows arguing knowledge of witnesses consisting of X ∈ Z m×n q , s ∈ Z n q and a small-norm e ∈ Z m which underlie a public vector b = X · s + e ∈ Z m q while simultaneously proving that the matrix X ∈ Z m×n q has been correctly certified. We believe our proof system to be useful in other applications involving zero-knowledge proofs in the lattice setting

    Unified, Minimal and Selectively Randomizable Structure-Preserving Signatures

    Get PDF
    Abstract. We construct a structure-preserving signature scheme that is selectively randomizable and works in all types of bilinear groups. We give matching lower bounds showing that our structure-preserving signature scheme is optimal with respect to both signature size and public verification key size. State of the art structure-preserving signatures in the asymmetric setting consist of 3 group elements, which is known to be optimal. Our construc-tion preserves the signature size of 3 group elements and also at the same time minimizes the verification key size to 1 group element. Depending on the application, it is sometimes desirable to have strong unforgeability and in other situations desirable to have randomizable signatures. To get the best of both worlds, we introduce the notion of selective randomizability where the signer may for specific signatures provide randomization tokens that enable randomization. Our structure-preserving signature scheme unifies the different pairing-based settings since it can be instantiated in both symmetric and asym-metric groups. Since previously optimal structure-preserving signatures had only been constructed in asymmetric bilinear groups this closes an important gap in our knowledge. Having a unified signature scheme that works in all types of bilinear groups is not just conceptually nice but also gives a hedge against future cryptanalytic attacks. An instantiation of our signature scheme in an asymmetric bilinear group may remain secure even if cryptanalysts later discover an efficiently computable homomorphism between the source groups

    Improved (Almost) Tightly-Secure Simulation-Sound QA-NIZK with Applications

    Get PDF
    We construct the first (almost) tightly-secure unbounded-simulation-sound quasi-adaptive non-interactive zero-knowledge arguments (USS-QA-NIZK) for linear-subspace languages with compact (number of group elements independent of the security parameter) common reference string (CRS) and compact proofs under standard assumptions in bilinear-pairings groups. Specifically, our construction has O(logQ) O(\log Q) reduction to the SXDH, DLIN and matrix-DDH assumptions, where Q Q is the number of simulated proofs given out. The USS-QA-NIZK primitive has many applications, including structure-preserving signatures (SPS), CCA2-secure publicly-verifiable public-key encryption (PKE), which in turn have applications to CCA-anonymous group signatures, blind signatures and unbounded simulation-sound Groth-Sahai NIZK proofs. We show that the almost tight security of our USS-QA-NIZK translates into constructions of all of the above applications with (almost) tight-security to standard assumptions such as SXDH and, more generally, \D_k-MDDH. Thus, we get the first publicly-verifiable (almost) tightly-secure multi-user/multi-challenge CCA2-secure PKE with practical efficiency under standard bilinear assumptions. Our (almost) tight SPS construction is also improved in the signature size over previously known constructions

    Structure-Preserving Signatures on Equivalence Classes From Standard Assumptions

    Get PDF
    Structure-preserving signatures on equivalence classes (SPS-EQ) introduced at ASIACRYPT 2014 are a variant of SPS where a message is considered as a projective equivalence class, and a new representative of the same class can be obtained by multiplying a vector by a scalar. Given a message and corresponding signature, anyone can produce an updated and randomized signature on an arbitrary representative from the same equivalence class. SPS-EQ have proven to be a very versatile building block for many cryptographic applications. In this paper, we present the first EUF-CMA secure SPS-EQ scheme under standard assumptions. So far only constructions in the generic group model are known. One recent candidate under standard assumptions are the weakly secure equivalence class signatures by Fuchsbauer and Gay (PKC\u2718), a variant of SPS-EQ satisfying only a weaker unforgeability and adaption notion. Fuchsbauer and Gay show that this weaker unforgeability notion is sufficient for many known applications of SPS-EQ. Unfortunately, the weaker adaption notion is only proper for a semi-honest (passive) model and as we show in this paper, makes their scheme unusable in the current models for almost all of their advertised applications of SPS-EQ from the literature. We then present a new EUF-CMA secure SPS-EQ scheme with a tight security reduction under the SXDH assumption providing the notion of perfect adaption (under malicious keys). To achieve the strongest notion of perfect adaption under malicious keys, we require a common reference string (CRS), which seems inherent for constructions under standard assumptions. However, for most known applications of SPS-EQ we do not require a trusted CRS (as the CRS can be generated by the signer during key generation). Technically, our construction is inspired by a recent work of Gay et al. (EUROCRYPT\u2718), who construct a tightly secure message authentication code and translate it to an SPS scheme adapting techniques due to Bellare and Goldwasser (CRYPTO\u2789)
    corecore